Vorkurs Physik: Übung 11

Wintersemester 2022/23

1. Trigonometrische Funktionen

a) Rechnen Sie um!

ins Bogenmass: 1) 30° , 2) 90° , 3) 270° , 4) 72°

- in Grad: 5) $\frac{\pi}{3}$, 6) $\frac{3\pi}{2}$, 7) $\frac{\pi}{4}$, 8) 1,79.
- **b)** Skizziere den Verlauf der Funktion $y(x) = 3\sin(2x 1)$.
- c) Bestimme die Periode der folgenden Funktionen:
 - 1) $3\sin\left(3x + \frac{1}{4}\right)$, 2) $\cos(4\pi x)$.
- d) Wie lautet die Gleichung der Sinuskurve mit der Amplitude 4 und der Periode $\frac{\pi}{2}$?

2. Trigonometrische Funktionen II

- a) Vereinfache folgende Ausdrücke:
- 1) $\cos^2 \varphi \cdot \tan^2 \varphi + \cos^2 \varphi$ 2) $1 \frac{1}{\cos^2 \varphi}$ 3) $\frac{1}{1 \sin \varphi} + \frac{1}{1 + \sin \varphi}$
- b) Zeigen Sie
 - 1. $\sin(2\phi) = 2\sin\phi\cos\phi$ bzw. $\cos(2\phi) = 2\cos^2\phi 1$,
 - 2. $\sin \phi_1 + \sin \phi_2 = 2 \sin \frac{(\phi_1 + \phi_2)}{2} \cos \frac{(\phi_1 \phi_2)}{2}$.

Dabei dürfen Sie die Additionstheoreme

$$\sin(\phi_1 \pm \phi_2) = \sin \phi_1 \cdot \cos \phi_2 \pm \cos \phi_1 \cdot \sin \phi_2$$
,

$$\cos(\phi_1 \pm \phi_2) = \cos\phi_1 \cdot \cos\phi_2 \mp \sin\phi_1 \cdot \sin\phi_2$$

verwenden.

3. Rechenregeln für Logarithmen

a) Beweisen Sie die folgenden Gleichungen unter Verwendung der bekannten Rechenregeln für die Exponentialfunktion $e^x \cdot e^y = e^{x+y}$ bzw. $(e^x)^y = e^{x \cdot y}$:

1)
$$\ln(A \cdot B) = \ln(A) + \ln(B)$$

2)
$$\ln\left(\frac{A}{B}\right) = \ln(A) - \ln(B)$$

3) $\ln(A^m) = m \cdot \ln(A)$

3)
$$\ln(A^m) = m \cdot \ln(A)$$

b) Zeigen Sie die für einen Basiswechsel des Logarithmus gültige Gleichung

$$\log_a x = \frac{\log_b x}{\log_b a}.$$

4. Zusatzaufgabe: Hyperbolische Umkehrfunktion

Zeigen Sie, dass sich die Umkehrfunktion arsinhx (Areasinus Hyperbolicus) von sinhx folgendermaßen mit Hilfe des Logarithmus darstellen lässt:

$$\operatorname{arsinh} x = \ln\left(x + \sqrt{x^2 + 1}\right) .$$